1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
//! Have you ever thought *"Dang! I sure would love to use global or thread-local
//! variables in my asynchronous tasks, but with all the thread-hopping and
//! cooperative-multi-tasking that'd be impossible"*? Well lament no more!
//! Because now you can...
//!
//! # Task Local Variables
//!
//! The [`TaskLocal`] trait allows you to add "local" variables to your tasks
//! and access them from anywhere within the task:
//!
//! ```
//! use task_local::{TaskLocal, WithLocalExt};
//!
//! #[derive(Default, TaskLocal)]
//! struct Context {
//!     value: i32,
//! }
//!
//! # async fn f() {
//! async {
//!     // set the local
//!     Context::local_mut(|ctx| ctx.value = 42);
//!
//!     // get the local
//!     let value = Context::local(|ctx| ctx.value);
//!     println!("{}", value); // prints 42
//!
//! }.with_local(Context::default()).await;
//! # }
//! ```
//!
//! ## Scoping
//!
//! The local value is only available while the annotated task is executing.
//! It does not persist after the task has completed. It is not accessible while
//! the task is idle. It is not available from tasks "spawned" from the
//! annotated task. Annotated tasks can be nested and the value will be the one
//! set from the most-recently set scope.
//!
//! ```
//! # use task_local::{TaskLocal, WithLocalExt};
//! # #[derive(Default, TaskLocal)]
//! # struct Context { value: i32 }
//! # async fn f() {
//! assert!(Context::try_local(|_ctx| {}).is_err());
//!
//! async {
//!     Context::local(|ctx| assert!(ctx.value == 0));
//!     Context::local_mut(|ctx| ctx.value = 42);
//!     Context::local(|ctx| assert!(ctx.value == 42));
//!
//!     async {
//!         Context::local(|ctx| assert!(ctx.value == 0));
//!         Context::local_mut(|ctx| ctx.value = 5);
//!         Context::local(|ctx| assert!(ctx.value == 5));
//!
//!     }.with_local(Context::default()).await;
//!
//!     Context::local(|ctx| assert!(ctx.value == 42));
//!
//! }.with_local(Context::default()).await;
//!
//! assert!(Context::try_local(|_ctx| {}).is_err());
//! # }
//! ```
//!
//! ## How does it work?
//!
//! While [`Future`][std::future::Future]s are often moved between threads and their progress may be
//! interleaved with others, they cannot do so while they are executing. While
//! `.poll()` is running, nothing else can happen on that thread and the
//! `Future` cannot be moved or destroyed. This takes advantage of that by
//! storing a handle to the task-local value in thread-local storage that is
//! accessible by the free methods. It puts the handle in when `.poll()` starts,
//! and it takes it back out before it ends.
//!
//! That could be the end of it, except nested uses of the annotated task would
//! stomp on the thread-local storage of their parent annotated tasks. This
//! avoids that problem by essentially storing a linked-list of handles, that
//! can be pushed and popped when tasks are suspended and resumed. Doing this
//! also allows access to prior scopes via the [`local_chain`][TaskLocal::local_chain] methods, which
//! could be useful in certain situations.
//!
//! ## Should I actually use this?
//!
//! You should follow the same general advice for global and thread-local
//! variables and avoid them if there is an alternative. However, sometimes
//! using a local variable is ergonomically advantageous, and this gives you
//! that option in an asynchronous context.
//!
//! However, it was only after creating this library that I found that it was
//! already implemented as [`tokio::task::LocalKey`](https://docs.rs/tokio/latest/tokio/task/struct.LocalKey.html).
//! The APIs are different, but largely implement the same functionality. The
//! tokio implementation uses a macro similar to `thread_local!` and has
//! synchronous support. The features my implementation has over it is
//! mutability and the ability to access the whole stack of task-local values.
//!
//! So probably not, but maybe. You can if you want. :)

use std::cell::{Ref, RefCell, RefMut};
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::thread::LocalKey;

use pin_project::pin_project;

/// This takes care of implementing [`TaskLocal`] by setting up storage and
/// using it for the required [`key()`][TaskLocal::key] method.
///
/// This derive macro does not use any attributes.
///
/// Any `#[derive]`-able types are allowed. Generics are not allowed (neither
/// lifetimes nor types). If you require storing a type that is generic with
/// specific generic parameters, you must implement it manually.
#[cfg(feature = "macros")]
pub use task_local_macros::TaskLocal;

/// Implementing this trait allows the type to be used with [`WithLocalExt::with_local`] on
/// asynchronous tasks and be accessible via the other associated methods while
/// executing those tasks.
///
/// All of the access methods work with function parameters instead of returning
/// references because it can't return a `'static` lifetime, there is no object
/// available to bind the lifetime to, and any references can't be held across
/// `.await`s.
///
/// You should ensure care that `*_mut` are not called while within the call of
/// another method. It will panic if that happens. This is to ensure Rust's
/// normal referential guarantees. Attempting to execute a nested task annotated
/// with the current local type while in one of these calls will also panic.
/// Implementations of `TaskLocal` on different types do not interfere with
/// each other.
pub trait TaskLocal: Sized + 'static {
    /// This returns a reference to the thread-local key that will be used to
    /// store task-local values of this type. This is auto-implemented by the
    /// derive macro, but if implemented manually should look something like
    /// this:
    ///
    /// ```
    /// use std::thread::LocalKey;
    /// use task_local::Storage;
    ///
    /// # struct Context;
    /// # impl Context {
    /// fn key() -> &'static LocalKey<Storage<Context>> {
    ///     thread_local!(static STORAGE: Storage<Context> = Storage::default());
    ///     &STORAGE
    /// }
    /// # }
    /// ```
    fn key() -> &'static LocalKey<Storage<Self>>;

    /// This method attempts to call the function with a reference to the
    /// currently stored value or return an error if it cannot be accessed.
    fn try_local<F, R>(f: F) -> Result<R, StorageError>
    where
        F: FnOnce(&Self) -> R,
    {
        Self::key().with(|storage| storage.current().map(|value| f(&value)))
    }

    /// This method attempts to call the function with a mutable reference to
    /// the currently stored value or return an error if it cannot be accessed.
    fn try_local_mut<F, R>(f: F) -> Result<R, StorageError>
    where
        F: FnOnce(&mut Self) -> R,
    {
        Self::key().with(|storage| storage.current_mut().map(|mut value| f(&mut value)))
    }

    /// This method will call the function with a reference to the currently
    /// stored value. It will panic if outside the execution of an annotated
    /// task.
    fn local<F, R>(f: F) -> R
    where
        F: FnOnce(&Self) -> R,
    {
        Self::try_local(f).expect("cannot access the value in task local storage")
    }

    /// This method will call the function with a mutable reference to the
    /// currently stored value. It will panic if outside the execution of an
    /// annotated task.
    fn local_mut<F, R>(f: F) -> R
    where
        F: FnOnce(&mut Self) -> R,
    {
        Self::try_local_mut(f).expect("cannot access the value in task local storage")
    }

    /// This method attempts to call the function with an iterator yielding
    /// references to all the currently stored values, in most-recently-annotated
    /// order or will return an error if it cannot be accessed. This will not
    /// return `StorageError::NoValue`, the iterator will simply be empty.
    fn try_local_chain<F, R>(f: F) -> Result<R, StorageError>
    where
        F: FnOnce(StorageIter<'_, Self>) -> R,
    {
        Self::key().with(|storage| storage.head().map(|head| f(StorageIter::new(&head))))
    }

    /// This method attempts to call the function with an iterator yielding
    /// mutable references to all the currently stored values, in
    /// most-recently-annotated order or will return an error if it cannot be
    /// accessed. This will not return `StorageError::NoValue`, the iterator
    /// will simply be empty.
    fn try_local_chain_mut<F, R>(f: F) -> Result<R, StorageError>
    where
        F: FnOnce(StorageIterMut<'_, Self>) -> R,
    {
        Self::key().with(|storage| {
            storage
                .head_mut()
                .map(|mut head| f(StorageIterMut::new(&mut head)))
        })
    }

    /// This method will call the function with an iterator yielding references
    /// to all the currently stored values, in most-recently-annotated order.
    fn local_chain<F, R>(f: F) -> R
    where
        F: FnOnce(StorageIter<'_, Self>) -> R,
    {
        Self::try_local_chain(f).expect("cannot access task local storage")
    }

    /// This method will call the function with an iterator yielding mutable
    /// references to all the currently stored values, in
    /// most-recently-annotated order.
    fn local_chain_mut<F, R>(f: F) -> R
    where
        F: FnOnce(StorageIterMut<'_, Self>) -> R,
    {
        Self::try_local_chain_mut(f).expect("cannot access task local storage")
    }
}

/// An extension type for [`Future`]s to annotate them with a [`TaskLocal`]
/// type.
pub trait WithLocalExt {
    /// This will construct a [`Future`] type that stores this value and will
    /// make it available to the [`TaskLocal`] methods when executing.
    fn with_local<T: TaskLocal>(self, value: T) -> TaskLocalFuture<Self, T>
    where
        Self: Sized,
    {
        TaskLocalFuture::new(self, value)
    }
}

impl<Fut> WithLocalExt for Fut where Fut: Future {}

/// An error that is returned from the `TaskLocal::try_*` methods if the
/// local value cannot be accessed.
#[derive(Copy, Clone, Debug)]
pub enum StorageError {
    /// There is no value in storage. This means that you are not in a thread of
    /// execution that is not wrapped in a `TaskLocalFuture`.
    NoValue,

    /// The storage cannot be accessed because it is currently locked. This can
    /// happen if you call the free methods recursively and at least one of them
    /// is accessing the storage mutably.
    Locked,
}

/// An iterator that yields references to all the currently accessible local
/// values.
pub struct StorageIter<'a, T> {
    current: Option<&'a TaskLocalNode<T>>,
}

impl<'a, T> StorageIter<'a, T> {
    fn new(head: &'a Option<Box<TaskLocalNode<T>>>) -> StorageIter<'a, T> {
        StorageIter {
            current: head.as_deref(),
        }
    }
}

impl<'a, T> Iterator for StorageIter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        self.current.take().map(|current| {
            let (current, next) = current.as_parts();
            self.current = next.as_deref();
            current
        })
    }
}

/// An iterator that yields mutable references to all the currently accessible
/// local values.
pub struct StorageIterMut<'a, T> {
    current: Option<&'a mut TaskLocalNode<T>>,
}

impl<'a, T> StorageIterMut<'a, T> {
    fn new(head: &'a mut Option<Box<TaskLocalNode<T>>>) -> StorageIterMut<'a, T> {
        StorageIterMut {
            current: head.as_deref_mut(),
        }
    }
}

impl<'a, T> Iterator for StorageIterMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item> {
        self.current.take().map(|current| {
            let (current, next) = current.as_parts_mut();
            self.current = next.as_deref_mut();
            current
        })
    }
}

/// A [`Future`] type that wraps another [`Future`] and stores a local value
/// which will be available to the [`TaskLocal`] methods when executing.
#[pin_project]
pub struct TaskLocalFuture<Fut, T> {
    #[pin]
    inner: Fut,
    value: Option<Box<TaskLocalNode<T>>>,
}

impl<Fut, T> TaskLocalFuture<Fut, T> {
    /// Constructs the type with the given [`Future`] and local value.
    pub fn new(inner: Fut, value: T) -> TaskLocalFuture<Fut, T> {
        TaskLocalFuture {
            inner,
            value: Some(Box::new(TaskLocalNode::new(value))),
        }
    }
}

impl<Fut, T> Future for TaskLocalFuture<Fut, T>
where
    Fut: Future,
    T: TaskLocal,
{
    type Output = Fut::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();
        let _guard = TaskLocalNodeGuard::new(T::key(), this.value);
        this.inner.poll(cx)
    }
}

#[cfg(feature = "futures")]
impl<Fut, T> futures::future::FusedFuture for TaskLocalFuture<Fut, T>
where
    Fut: futures::future::FusedFuture,
    T: TaskLocal,
{
    fn is_terminated(&self) -> bool {
        self.inner.is_terminated()
    }
}

/// An opaque type used to hold and facilitate access to the task-local values.
///
/// This type should only be used when implementing [`TaskLocal::key`]
/// manually.
pub struct Storage<T> {
    head: RefCell<Option<Box<TaskLocalNode<T>>>>,
}

impl<T> Storage<T> {
    fn current(&self) -> Result<Ref<'_, T>, StorageError> {
        use StorageError::*;

        let head = self.head.try_borrow().map_err(|_| Locked)?;
        let value = Ref::filter_map(head, |head| head.as_ref().map(|node| &node.value))
            .map_err(|_| NoValue)?;

        Ok(value)
    }

    fn current_mut(&self) -> Result<RefMut<'_, T>, StorageError> {
        use StorageError::*;

        let head = self.head.try_borrow_mut().map_err(|_| Locked)?;
        let value = RefMut::filter_map(head, |head| head.as_mut().map(|node| &mut node.value))
            .map_err(|_| NoValue)?;

        Ok(value)
    }

    fn head(&self) -> Result<Ref<'_, Option<Box<TaskLocalNode<T>>>>, StorageError> {
        self.head.try_borrow().map_err(|_| StorageError::Locked)
    }

    fn head_mut(&self) -> Result<RefMut<'_, Option<Box<TaskLocalNode<T>>>>, StorageError> {
        self.head.try_borrow_mut().map_err(|_| StorageError::Locked)
    }

    fn push(&self, mut node: Box<TaskLocalNode<T>>) {
        let mut head = self.head.borrow_mut();
        node.parent = head.take();
        *head = Some(node);
    }

    fn pop(&self) -> Option<Box<TaskLocalNode<T>>> {
        let mut head = self.head.borrow_mut();
        let mut node = head.take();
        *head = node.as_mut().and_then(|node| node.parent.take());
        node
    }
}

impl<T> Default for Storage<T> {
    fn default() -> Self {
        Self {
            head: RefCell::new(None),
        }
    }
}

struct TaskLocalNode<T> {
    value: T,
    parent: Option<Box<TaskLocalNode<T>>>,
}

impl<T> TaskLocalNode<T> {
    fn new(value: T) -> TaskLocalNode<T> {
        TaskLocalNode {
            value,
            parent: None,
        }
    }

    fn as_parts(&self) -> (&T, &Option<Box<TaskLocalNode<T>>>) {
        (&self.value, &self.parent)
    }

    fn as_parts_mut(&mut self) -> (&mut T, &mut Option<Box<TaskLocalNode<T>>>) {
        (&mut self.value, &mut self.parent)
    }
}

struct TaskLocalNodeGuard<'a, T: 'static> {
    key: &'static LocalKey<Storage<T>>,
    current: &'a mut Option<Box<TaskLocalNode<T>>>,
}

impl<'a, T: 'static> TaskLocalNodeGuard<'a, T> {
    fn new(
        key: &'static LocalKey<Storage<T>>,
        current: &'a mut Option<Box<TaskLocalNode<T>>>,
    ) -> TaskLocalNodeGuard<'a, T> {
        key.with(|storage| storage.push(current.take().unwrap()));
        TaskLocalNodeGuard { key, current }
    }
}

impl<'a, T> Drop for TaskLocalNodeGuard<'a, T> {
    fn drop(&mut self) {
        *self.current = Some(self.key.with(|storage| storage.pop().unwrap()));
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn storage_can_push_and_pop() {
        let storage = Storage::default();

        storage.push(Box::new(TaskLocalNode::new(1)));
        storage.push(Box::new(TaskLocalNode::new(2)));
        storage.push(Box::new(TaskLocalNode::new(3)));

        assert!(matches!(
            storage.pop().as_deref(),
            Some(TaskLocalNode {
                value: 3,
                parent: None
            })
        ));
        assert!(matches!(
            storage.pop().as_deref(),
            Some(TaskLocalNode {
                value: 2,
                parent: None
            })
        ));
        assert!(matches!(
            storage.pop().as_deref(),
            Some(TaskLocalNode {
                value: 1,
                parent: None
            })
        ));
        assert!(matches!(storage.pop(), None));
    }

    #[tokio::test]
    async fn future_enables_storage() {
        thread_local!(static STORAGE: Storage<Context> = Storage::default());
        struct Context;
        impl TaskLocal for Context {
            fn key() -> &'static LocalKey<Storage<Self>> {
                &STORAGE
            }
        }

        assert!(STORAGE.with(|storage| storage.head.borrow().is_none()));
        TaskLocalFuture::new(
            async {
                assert!(STORAGE.with(|storage| storage.head.borrow().is_some()));
            },
            Context,
        )
        .await;
        assert!(STORAGE.with(|storage| storage.head.borrow().is_none()));
    }

    #[tokio::test]
    async fn task_local_trait_accesses_value() {
        struct Context;
        impl TaskLocal for Context {
            fn key() -> &'static LocalKey<Storage<Self>> {
                thread_local!(static STORAGE: Storage<Context> = Storage::default());
                &STORAGE
            }
        }

        assert!(Context::try_local(|_| {}).is_err());
        assert!(Context::try_local_mut(|_| {}).is_err());
        assert!(Context::local_chain(|mut c| c.next().is_none()));
        assert!(Context::local_chain_mut(|mut c| c.next().is_none()));
        TaskLocalFuture::new(
            async {
                assert!(Context::try_local(|_| {}).is_ok());
                assert!(Context::try_local_mut(|_| {}).is_ok());
                assert!(Context::local(|context| matches!(context, Context)));
                assert!(Context::local_mut(|context| matches!(context, Context)));
                assert!(Context::local_chain(|mut c| {
                    c.next().is_some() && c.next().is_none()
                }));
                assert!(Context::local_chain_mut(
                    |mut c| c.next().is_some() && c.next().is_none()
                ));
            },
            Context,
        )
        .await;
        assert!(Context::try_local(|_| {}).is_err());
        assert!(Context::try_local_mut(|_| {}).is_err());
        assert!(Context::local_chain(|mut c| c.next().is_none()));
        assert!(Context::local_chain_mut(|mut c| c.next().is_none()));
    }

    #[tokio::test]
    async fn ext_trait_works() {
        struct Context;
        impl TaskLocal for Context {
            fn key() -> &'static LocalKey<Storage<Self>> {
                thread_local!(static STORAGE: Storage<Context> = Storage::default());
                &STORAGE
            }
        }

        assert!(Context::try_local(|_| {}).is_err());
        async {
            assert!(Context::local(|context| matches!(context, Context)));
        }
        .with_local(Context)
        .await;
        assert!(Context::try_local(|_| {}).is_err());
    }
}